M2Mqtt and GnatMQ are dead ? Long life to them !

In the last months a lot of people asked me if the M2Mqtt and GnatMQ projects are dead because there were no commits for a long time.

I can say … no ! They are not absolutely dead !

I was very busy in the last months, starting my new exciting Red Hat career in the messaging and IoT team, but I want to continue to support the projects as lead and main committer. Of course, I’ll be still busy with my new job but my commitment is to continue to improve the libraries, fixing bugs and adding new features. Just remember that I’ll do it in my spare time so I could not be so quick to reply your suggestions; of course your help with useful pull requests will be great !

As you now, today the M2Mqtt client library is under the official Paho GitHub repo and I have finally deleted the repo on my personal GitHub account.

The GnatMQ, based on M2Mqtt, will continue to live where it’s now here.

I’ll do my best to check the issues and the pull requests provided by the community, happy to know that my projects have a lot of followers and there are a lot of professional solutions using them out there !

As always I invite you to share with me your experience using my libraries in order to mention your solution in the “case studies” section of the official web site.

Thanks !

A routing IoT gateway to the Cloud

Let’s start with an on-premise solution …

Imagine that you have an embedded solution (or if you like it … an IoT solution) with a bunch of tiny devices which are connected to an on-premise server which receives telemetry data from them and is able to execute some elaboration in order to show information in real time on a dashboard and control the devices.

Imagine that your solution is based on the AMQP protocol and perhaps your on-premise server is running a messaging broker for gathering data from devices as messages through the local network.

Imagine that, due to your very constrained devices, the security in the network is guaranteed only at data level by encrypting the body of every single AMQP message. It’s possible that due to their complexity and need of more resources (CPU and memory) you can’t use sophisticated algorithms (i.e. DES, 3DES, AES, …) on your devices but only simple ones (i.e. TEA, ..).

Your solution is just working great in your environment.

… but now we want to move it to the Cloud

Imagine that for some reasons you need to change the on-premise nature of your solution and you want to connect the devices directly to the cloud with a very strict rule : nothing to change on the devices. At least you can change some configuration parameter (i.e. server ip, …) but not the way and the protocol they are using for communication.

The first simple solution could be moving your messaging broker from the on-premise server on a IaaS in the Cloud; just changing connection parameters on your devices and all continue to work as before.

The big problem now is that your data are sent through the public network and your security is based on a simple encryption algorithm applied only on the payload of the messages. For this reason, you start to think about using SSL/TLS in order to have security at connection level on top of TCP/IP, data encryption and server authentication.

Start to think about it but then … wait … I can’t use SSL/TLS on my tiny devices … they don’t have the needed resources in terms of CPU and memory … and now ?

Fog computing and IoT gateway : the solution ?

You know about “fog computing” (the new buzz word after IoT ?) and that you can solve your problem using an IoT gateway. Having this gateway could mean to have an intelligent piece of software which is able to gather data from the local network, process them in some way and then send them to the Cloud. The gateway could give you more features like filtering on data (sending only part of them), offline handling (if the Cloud isn’t reachable) and complex local processing but … wait … you don’t want it … you just want that data arrives to the Cloud in the same way as before (to the on-premise server) and for now you don’t need other additional great features.

Could we have a very simple IoT gateway with only the two following features we need :

  • SSL/TLS protocol support on behalf of the tiny devices;
  • traffic routing from devices to the Cloud in a transparent way;

The answer is … yes ! You have such solution and it’s provided by the Qpid Dispatch Router project from the ASF (Apache Software Foundation).

I already wrote about it in some previous articles [1] [3] so let me just show how you can use the router in a way that solve your “porting” problem.

The router just needs the right configuration

In order to show in a very simple way how to configure the router for our objective, we can use the Azure IoT Hub as Cloud platform for the IoT. As all the Azure messaging services like Service Bus and Event Hub, the IoT Hub needs an encrypted connection based on the SSL/TLS protocol … so it’s the problem we want to solve for our non SSL capable devices.

For the sake of simplicity we can run the router on a Raspberry Pi using the Raspbian distribution as OS; you can read about installing the Qpid Dispatch Router on Linux and on the Raspberry Pi in these articles [2] [4].

The main point is the configuration needed for the router in order to connect to an IoT Hub and routing the traffic from devices to it.

First of all we have to consider all the addresses that at AMQP level are used in order to send telemetry data to the hub, receive commands and reply with feedback. All these information are deeply explained here [5] [6].

The routing mechanism used in this configuration is the “link routing” [3] which means that the router creates a sort of “tunneling” between devices and the IoT Hub; it opens the TCP/IP connection with the hub, establishing it with SSL/TLS on top, and then opens the AMQP connection. All the SSL/TLS stuff happens between router and IoT Hub and the devices aren’t aware about it. You can see what happens through the router trace :

pi@raspberrypi:~ $ PN_TRACE_FRM=1 qdrouterd --conf ex06_iothub.conf
Sat Jul 23 11:56:17 2016 SERVER (info) Container Name: Router.A
Sat Jul 23 11:56:17 2016 ROUTER (info) Router started in Standalone mode
Sat Jul 23 11:56:17 2016 ROUTER_CORE (info) Router Core thread running. 0/Router.A
Sat Jul 23 11:56:17 2016 ROUTER_CORE (info) In-process subscription M/$management
Sat Jul 23 11:56:18 2016 ROUTER_CORE (info) In-process subscription L/$management
Sat Jul 23 11:56:18 2016 AGENT (info) Activating management agent on $_management_internal
Sat Jul 23 11:56:18 2016 ROUTER_CORE (info) In-process subscription L/$_management_internal
Sat Jul 23 11:56:18 2016 DISPLAYNAME (info) Activating DisplayNameService on $displayname
Sat Jul 23 11:56:18 2016 ROUTER_CORE (info) In-process subscription L/$displayname
Sat Jul 23 11:56:18 2016 CONN_MGR (info) Configured Listener: 0.0.0.0:5672 proto=any role=normal
Listening on 0.0.0.0:5672
Sat Jul 23 11:56:18 2016 CONN_MGR (info) Configured Connector: ppatiernoiothub.azure-devices.net:5671 proto=any role=on-demand
Sat Jul 23 11:56:20 2016 POLICY (info) Policy configured maximumConnections: 0, policyFolder: '', access rules enabled: 'false'
Sat Jul 23 11:56:20 2016 SERVER (info) Operational, 4 Threads Running
Connected to ppatiernoiothub.azure-devices.net:5671
[0x19dc6c8]: -> SASL
[0x19dc6c8]:0 -> @sasl-init(65) [mechanism=:ANONYMOUS, initial-response=b"anonymous@raspberrypi"]
[0x19dc6c8]: -> AMQP
[0x19dc6c8]:0 -> @open(16) [container-id="Router.A", hostname="ppatiernoiothub.azure-devices.net", max-frame-size=65536, channel-max=32767, idle-time-out=60000, offered-capabilities=:"ANONYMOUS-RELAY", properties={:product="qpid-dispatch-router", :version="0.6.0"}]
[0x19dc6c8]: <- SASL
[0x19dc6c8]:0 <- @sasl-mechanisms(64) [sasl-server-mechanisms=@PN_SYMBOL[:EXTERNAL, :MSSBCBS, :ANONYMOUS, :PLAIN]]
[0x19dc6c8]:0 <- @sasl-outcome(68) 
[0x19dc6c8]: <- AMQP
[0x19dc6c8]:0 <- @open(16) [container-id="DeviceGateway_1766cd14067b4c4b8008b15ba75f1fd6", hostname="10.0.0.56", max-frame-size=65536, channel-max=8191, idle-time-out=240000]

At this point, the devices can connect locally to the router and when they asked for all the AMQP links related to the IoT Hub addresses, they will be tunneled by the router : the AMQP “attach” performatives are routed to the IoT Hub through the connection with the router. The communication then continues on this link in terms of message transfers directly between IoT Hub and devices but all encrypted until the router through the SSL/TLS protocol.router_iothub

The router configuration is something like that :

listener {
 addr: 0.0.0.0
 port: 5672
 authenticatePeer: no
}

ssl-profile {
 name: azure-ssl-profile
 cert-db: /opt/qdrouterd/Equifax_Secure_Certificate_Authority.pem
}

connector {
 name: IOTHUB
 addr: <iotHub>.azure-devices.net
 port: 5671
 role: on-demand
 sasl-mechanisms: ANONYMOUS
 ssl-profile: azure-ssl-profile
 idleTimeoutSeconds: 120
}

# sending CBS token
linkRoute {
 prefix: $cbs/
 connection: IOTHUB
 dir: in
}

# receiving the status of CBS token request
linkRoute {
 prefix: $cbs/
 connection: IOTHUB
 dir: out
}

# sending telemetry path and command replies from device to hub on : devices/<DEVICE_ID>/messages/events
# ATTENTION ! Here we need CBS Token
linkRoute {
 prefix: devices/
 connection: IOTHUB
 dir: in
}

# receiving command on device from hub on : devices/<DEVICE_ID>/messages/deviceBound
# ATTENTION ! Here we need CBS Token
linkRoute {
 prefix: devices/
 connection: IOTHUB
 dir: out
}

The main points in the configuration are :

  • a listener entity which defines that the router accept incoming AMQP connections on port 5672 (not encrypted);
  • the ssl-profile entity in order to configure the parameter for SSL/TLS connection to the IoT Hub and specifically the CA certificate to use for server authentication;
  • the connector entity which defines the way the router connects to the IoT Hub (address and port) using the above SSL profile;

After above parameters there is a bunch of linkRoute entities which define what are the addresses that should be link routed by the router from devices to the hub (using the specified connector).

You can find the complete configuration file here.

The Netduino Plus 2 use case

In order to develop an application very quickly on device side I decided to use my knowledge about .Net Micro Framework using a board that hasn’t the SSL/TLS support : the Netduino Plus 2 board.

The simple application is able to send a message to the IoT Hub and receive a new one replying with a feedback. All the code is available here.

In the following pictures you can see the message sent by the board and the command received (with the related feedback) through the Device Explorer tool.

01

02

Conclusion

Of course, the Qpid Dispatch Router project has a greater object than I showed here that could be providing connection to messaging services at scale thanks a more complex router network, with a path redundancy feature to reach a broker or a simple receiver.

In this article, I just showed a different way to use it in order to give more power to tiny devices which aren’t able to connect to AMQP based services due to their limitation (in this case the lack of SSL/TLS support).

If you consider the starting point, the configuration change could be avoided because the router could have same IP address and AMQP listening port as the previous on-premise server .

It means that only adding the router configured for the Cloud connection solves the problem !

[1] Routing AMQP : the Qpid Dispatch Router project

[2] Qpid Dispatch Router installation on your Linux machine

[3] Routing mechanisms for AMQP protocol

[4] My Raspberry Pi runs the Qpid Dispatch Router

[5] Connecting to the Azure IoT Hub using an AMQP stack

[6] Azure IoT Hub : commands and feedback using AMQP .Net Lite

My Raspberry Pi runs the Qpid Dispatch Router

This morning my “embedded” soul had an idea for supporting my “messaging” soul and spending some time in a productive way … trying to compile the Qpid Dispatch Router on a different machine with a different architecture : it’s C/C++ code … so it’s portable by definition (even if related to Linux for now) … it uses Python but today this language is available on a lot of different platforms … so it seems to be no problems.

Searching for some embedded stuff in my closet and discarding Cortex-Mx based boards (for obvious reasons regarding Linux lack on them) I got my Raspberry Pi … the first version (ARM11 based … not Cortex-Ax) :-)

embedded_stuff

I have the Pi2 as well (I have to by the third version) but I preferred to stop my research for starting immediately. I followed all the steps needed (explained in my previous article) using the Pi as a normal PC (connected via SSH) and after a while for compiling directly on the board, the router was up and running !

router_pi

The only tweak needed was to force cmake to use the Python 2.7 library with following command line :

cmake .. -DCMAKE_INSTALL_PREFIX=/usr -DPYTHON_LIBRARY=/usr/lib/arm-linux-gnueabihf/libpython2.7.so -DPYTHON_INCLUDE_DIR=/usr/include/python2.7 -DPYTHON_EXECUTABLE=/usr/bin/python

because the 3.x version is installed on the Pi as well but we can’t use it for the router.

I know .. it’s not the right way to compile source code for embedded devices and cross-compilation from my PC is the better way to do that but I preferred it in order to go fast and avoid to setup a complete ARM toolchain on the laptop; of course be patient … building the Qpid Proton took me about one hour ! I can suggest you to have a good coffee …

Before starting the router, another simple tweak was needed in order to make persistent the value of the PYTHONPATH environment variable writing the following line to the .bashrc file :

export PYTHONPATH=/usr/lib/python2.7/site-packages

Now I have an idea … Pi with its Linux version is SSL/TLS capable but there are a lot of resources constrained devices which are able to “speak” AMQP but can’t support SSL/TLS connections. Why don’t use the Pi as a “shadow” IoT gateway and it’s security capabilities in order to bring above constrained devices to reach SSL/TLS and AMQP based cloud platforms even if they can’t “speak” SSL/TLS ?

Routing mechanisms for AMQP protocol

In the previous article, we installed the Qpid Dispatch Router and had a quick overview about the available tools inside the installation package for both router management and monitoring.

Now it’s time to start using the router from simple to complex configurations and network topologies with some examples which will involve AMQP senders, receivers and/or brokers. The broker part won’t be always necessary because the AMQP protocol is a “peer to peer” protocol and it works great connecting two clients directly without the “store and forward” mechanism provided by a broker in the middle. For more information about that you can read the first article of this series.

In this article, I’ll use the router with the default configuration showing how a sender and a receiver can connect to it and exchange messages through the router itself.

Routing mechanisms

First of all it’s interesting to say that the router supports two different types of routing mechanisms.

Message routing

When the router receives a message on a link, it uses the address specified in the target terminus when the sender attached the link itself to the route; if this address wasn’t specified, the destination address is get from the “To” property of the message. Based on such information, the router inspects its routing table to determine the route for delivering the message : it could be a link attached by a direct receiver to the router or another router inside the network that will be the next hop for reaching the destination. Of course, the message could be sent to different receivers all interested in the same address. The main point here is that the routing decision is made for each received message and there is always a communication between internal router nodes and external clients.

message_routing

As you can see in the above picture, a link is established between sender and router and between router and receiver. They are two completely distinct links that the router uses for messages exchange between sender and receiver through the routing mechanism on message basis.

For example, it means that there is a different flow control between router (with its internal receiver) and sender and between router (with its internal sender) and receiver : of course, it’s true that if the receiver grants few credits (i.e. 10) but the router (the internal receiver) grants more credits to the sender (i.e. 250 by default), it takes in account this difference. If for any reason the receiver closes the connection (after receiving 10 messages) and sender has already sent more than 10 messages (acknowledged by an “accepted” disposition), the router will reply with a “released” disposition for the next 40 messages because they can’t be delivered to the closed receiver.

Another interesting point is related to the message “settlement” : the router always propagates the delivery and its settlement along the network. On receiving a “pre-settled” message, its nature is propagated to the destination. The same is for “unsettled” messages : in that case, the router needs to track the incoming delivery and send the unsettled message to the destination; when it will receive the disposition (settlement) from the final receiver, it will reply in the same way to the original sender.

The last interesting aspect of message routing is the available routing patterns which define the paths followed by messages across the network :

  • closest : even if there are more receivers for the same address, the message is sent on the shortest path to reach the destination. It means that only one receiver will get the message;
  • balanced : when more receivers are attached to the same address, the messages sent to that address are spread across receivers. It means that each receiver will receive a different message at time in a sort of “competing consumers” way;
  • multicast : it’s something like a “publish/subscribe” pattern where all the receivers will receive the same message published on the address they are attached;

When the receivers for a specific address are all connected to the same router, we could think that “closest” and “balanced” have the same behavior because all the paths have same length and receivers are closed at same level to the router. It’s not so true because with “closest” the router uses a strict round-robin distribution across receivers while with “balanced” it takes into account the number of unsettled deliveries for each receiver and favors the “faster” of them (who settled messages faster than others).

To be more clear, suppose to have a sender S, two receivers R1 and R2 and a routers network with R1 connected to the same router as S and R2 connected to a different router (connected to the previous). We can say that R1 is “one level closed” to S and R2 is “two level closed” to S.

In the following scenario, with the “closest” distribution all the messages sent by S will be always delivered to R1.

closest_routing

“closest” message routing

Using the “balanced” distribution, the messages are spread across both receivers and there is nor relation with the path length.

balanced_routing

“balanced” message routing

Finally, with “multicast” distribution all messages are sent to all receivers.

multicast_routing

“multicast” message routing

Link routing

When the router receives an attach request, it’s propagated through the network in order to reach the destination node and establish the real link. When the sender starts to send messages to the router, it propagates that message through the established link to the destination without making any decision at message level. You can think of it as a sort of virtual connection or a tunnel between sender and receiver through a routers network.

link_routing

As you can see in the above picture, the link is established directly between the two peers and all performatives go through it.

From a flow control point of view, it’s directly handled between sender and receiver; any credits granted by the receiver arrives to the sender with a flow performative without any interference by the router in the middle. The link through the router is like a “tunnel” and it seems that the two peers are directly connected.

The same is true for disposition about settlement for “unsettled” messages that the sender receives directly from the receiver.

The concept of different routing patterns doesn’t make sense because in this case there is a direct link between sender and receiver so the router doesn’t make any decision on single message basis but it has only to propagate the frame along the link.

Let’s start … simple !

Now it’s time for a very simple example with a router started using the default configuration and only one sender and one receiver connected to it and attached to the “/my_address” address.

I used the “simple_recv” and “simple_send” C++ client examples for that and you can find them inside the Qpid Proton installation folder.

First of all let’s start the receiver specifying the address and the number of messages it wants to receive (it will grant link credits for that), i.e. 10 messages.

simple_recv_start

Using the qdstat management tool we can see that an endpoint for the “my_address” address is defined with “out” direction (from router to the receiver) with no messages delivered yet.

qdstat_01

After that let’s start the sender in order to send some auto generated messages, i.e. 5 messages.

simple_send_start

As you can see, the messages sent are all settled and confirmed. What’s happened at receiver side ?

simple_recv_messages

All messages sent by sender are now received and the simple application doesn’t close the connection because it’s waiting for the other 5 messages in relation to the 10 credits granted (of course it’s only an application behavior and not related to the router mechanisms).

Inspecting the router with the qdstat management tool we can see that on the output endpoint for the “my_address” address there are 5 delivered messages. What we can’t see is the endpoint on the same address with the opposite “in” direction (from sender to router) because after sending the messages, the sender closed the connection to the router and the endpoint is deleted. You can trust me … it was alive for all the time the sender was sending messages !

qdstat_02

As you can see we have directly connected sender and receiver without the need for a broker in the middle with its “store and forward” mechanism. In the above scenario, when the messages are settled and confirmed to the sender it means that they are really received by the receiver.

Conclusion

With this article I introduced the different mechanisms for messages routing that the Qpid Dispatch Router provides. For every scenarios we can choose the better way and what we need in order to distribute messages in a useful way for our distributed application. We saw a simple example on connecting sender and receiver through the router without the need for a broker in the middle. In the next articles, I’ll increase the complexity starting to use non default configuration files and exploring different way to connect routers with clients and brokers.

M2Mqtt : another moving … now under the official Eclipse Paho GitHub repo !

eclipse_github_repo

As you know they’re about 2 years that my M2Mqtt library is under the Eclipse Paho project as the official and supported C#, .Net (desktop, compact and micro) and WinRT client for MQTT protocol.

It’s source code was first released on CodePlex and then moved on GitHub inside my personal account in the last year but today it’s official part of the Eclipse Paho GitHub account.

It means that in the next few days I’m going to delete it as my personal GitHub repository and you will find all updates and fixes in its new “home”. Of course, you have to use this new repository in order to open new issues.

His brother, the GnatMQ broker, will stay on my personal GitHub account.

I’ll remain the principal committer and contributor but as open source project, the real power will come from the community !

Qpid Dispatch Router installation on your Linux machine

In the previous article I introduced the Dispatch Router from the Apache Qpid project, its main features, capabilities and the scenarios where it could be useful in order to develop high scalable AMQP based messaging solutions.

The first step for starting to use the router is the installation step and I’ll explain how to do that in this short post. I’ll use some personal Docker files in order to build fully functional images but the you can find the official ones in the router GitHub account here.

Qpid Proton : the dispatch router foundation

This router is based on the Qpid Proton project, a messaging library developed in C, C++ and Java (pure ProtonJ implementation) with bindings for other different languages like Python, PHP and Ruby; in order to work properly, the router needs only the base ProtonC implementation and the Python binding.

First of all, we need the main compiler tools like gcc, cmake and make. The UUID library is needed for unique identifier generation (i.e. container name, message id, …) and the OpenSSL library for encryption and for handling SSL/TLS connections. Furthermore, the last library version leverages on the Cyrus library for the SASL protocol used for supporting different authentication mechanisms on the AMQP protocol.

To simplify the installation process, I wrote two Docker files available here on GitHub both for Fedora and Ubuntu you can use as reference for reproducing the steps on your machine or to generate a Docker image.

Now it’s router time

The Qpid Dispatch Router uses the same tools (like gcc, cmake, make, …) needed for Qpid Proton; if you can compile the messaging library without problems then you are ready to compile and install the router as well.

At time I’m writing this article the official released version is the 0.5 with the 0.6 version under beta. We can use both this versions : in the former case we can download the released package, in the latter we can clone the official GitHub repository and recompile the bits from there having in this way the latest updated code and features under development. The new 0.6 version has gone through major architectural changes to make it highly scalable; furthermore, the router configuration is now more intuitive and easy to understand than the previous versions.

Even in that case I wrote both Docker files for the official released version and for compiling the bits (on both Fedora and Ubuntu of course) in order to have a Docker image and the router up and running in a related container.

Let’s start the router

To check the installation process we can start the router with the simple “qdrouterd” command; it is launched automatically in the case of starting the Docker image.

qdrouterd

Typing that command, the router starts with the default configuration file. We will dig into in the next articles to understand the meaning of all main available configuration options for tuning the router behavior.

In the above output, the main points are :

  • The router instance is named Qpid.Dispatch.Router.A;
  • The router operates in “standalone” mode which means that it doesn’t cooperate with other routers and won’t be used in a routers network;
  • It exposes a management endpoint we can use in order to interact with the router itself and changing its internal configuration. It’s a pure AMQP endpoint on which the available operations are defined by the AMQP management specification (which is in draft, here). For all developers who don’t know it well, you can think that as a sort of RESTful interface with CRUD operations for managing resources but instead of having HTTP as transport protocol, it used AMQP and its semantics;
  • A listener is started on all network available interfaces and listening for connections on the standard AMQP port (5672, so not encrypted);
  • The instance is using 4 threads for handling messages traffic and all other internal operations;

The package tools

Other then the router itself, the project provides a couple of tools useful for showing main running information and for interacting with it.

The “qdstat” tool shows all statistics information, endpoints and router traffic.

qdstat

As we can see from the above picture (-l option is for showing router AMQP links), the router is exposing the $management endpoint and a local temporary endpoint that is used for communicating with the qdstat tool.

Indeed, when we start the tool, it opens an AMQP connection to the router and attaches a link on the management endpoint for sending requests as you can see in the following picture with traffic capture (using Wireshark).

qdstat_management

At same time another link is attached for a temporary local endpoint used for receiving information to show on the console.

qdstat_temp_endpoint

When the tool sends a request to the router through a transfer performative, it specifies the local reply address using the “Reply-To” AMQP property.

The “qdmanage” tool is a general purpose AMQP management tool that we can use to interact with a running router and changing its internal configuration. It’s very useful because even if our router starts with a static configuration written in the related file, we can change it dynamically at runtime to adapt the router behavior to our ongoing use case.

For example we can show all the active connections on the router.

qdmanage

In this case, there are no connections other than the one related to the tool itself which connects to the router via AMQP in order to query and receive the related information.

Conclusion

With this post now we have installed the dispatch router stuff on our machine (or on a Docker image) and checked that it runs properly with the default configuration at least. We peeked the tools available with the installation and all related operations and information provided in order to interact with the router at runtime. Starting from the next article we’ll see how to use the router in different scenarios with an increasing complexity, from a standalone router to a routers network.

 

IoT developer survey : my point of view

Few days ago, the Eclipse Foundation published the report of the last IoT developer survey sponsored by the foundation itself with IEEE IoT and Agile IoT. This survey has as main objective to understand what are the preferred technologies used by developers in terms of languages, standards and operating systems; furthermore, it shows what are the main concerns about IoT and how companies are shipping IoT solutions today.

Great content about this report was published by Ian Skerrett (Vice President of Marketing at Eclipse Foundation) on his blog and on slideshare with a summary of all main information about it.

I’d like just to add my 2 cents and doing some absolutely personal considerations about the results …

Companies are investing …

Regarding how companies are delivering IoT solutions, it’s clear that the IoT market is growing. A lot of companies already have IoT products in the fields and the others are planning to develop them in the coming months. It’s not a surprise, other than a buzzword, the IoT is a real business opportunity for all companies strictly related to the embedded devices (silicon vendors, OEMs, ..) or software companies (for the cloud and application side) which are rapidly change how their business is made.

Security and interoperability : the big concerns

The result related to the main concerns about IoT is very clear : people and companies are worried about the security. All data flowing from our personal life or owned by companies to the cloud need to be protected in order to avoid someone can steal them. The concern about security is strictly related to software protocols (i.e. SSL/TLS, …) and hardware stuff (i.e. cryptochip, …) and today it seems that a very good solution isn’t available. The same is for interoperability : having a lot of IoT standard protocols means having NO standard protocols. A lot of consortiums are trying to define some standard specifications and frameworks in order to define a standard but … they are too much; all big companies are divided in different consortiums and some of them are part of more then one : this is a big deal, as for protocols … it means NO standard.

Developer prefer Java and C … what about JavaScript ?

It’s not a surprise the first place of Java as preferred language and C as second one : Java is used in a lot of cloud solutions which are based on open source products and C is the better language for developing on devices side with great performance at low cost (at least from an hardware point of view). First strange position is about JavaScript as third most used language : I hope this position is related to its huge usage with NodeJS on server side and not as “embedded” language on devices … I’m scared about that.

Protocols : the current know-how is leading

Now, the protocols …

Having HTTP/1.1 as first used protocol is real because today it’s the only well known protocol in the developers world; in order to develop and deliver an IoT solution with a quick time to market, companies leverage on internal know-how and sometimes they don’t invest to figure out how other protocols work and if they have other advantages. It explains to me this position, thanks to HTTP/1.1 simplicity and its ASCII/text based nature : a lot of developers don’t like binary format so much. Last point is that the REST architecture is a very good solution in a lot of scenarios and HTTP/1.1 is the most used protocol (the only one ?) for that.

MQTT and CoAP are used a lot thanks to the available open source projects and their simplicity; MQTT is very lightweight and works great on tiny embedded devices, CoAP tries to overcome some HTTP/1.1 disadvantages (i.e. server push, observer, …) with new features and its binary nature.

A lot of developers are scared about AMQP because I have to admit it’s not so simple like the previous ones but it’s powerful and everyone should give it a try. If you want to start with it, you can find a lot of links and resources here.

I’m surprised by the fourth position of HTTP/2.0 ! I mean … how many developers know, love and use HTTP/2 today ? I was surprised by this high position … I expected it behind “in-house, proprietary”, AMQP and XMPP. I suppose that companies are prototyping solutions using this protocol because they think that thanks to the HTTP/1.1 knowledge it’s quite simple to move to the next version : I think it’s totally wrong, because HTTP/2.0 is completely different from HTTP/1.1. I love it … I’ll invest in it.

OS : Linux and RTOS on bare metal

Regarding operating systems, the first position for Linux isn’t a surprise but we have to consider it both on server side and devices side (even if embedded devices based on Linux are a lot). The other OS are only for embedded devices (low constrained devices) so the percentages don’t have any help from cloud side. Finally Linux is useful for IoT gateway too (as we know with Kura) even if Microsoft, for example, is investing in its Windows IoT Core and will release an IoT Gateway SDK in the next months.

All the services in the cloud

Not a surprise Amazon AWS with its first position as Cloud services provider but I don’t think about their relatively new AWS IoT platform but all the IoT open source stuff that developers prefer to run on Amazon VMs than Azure VMs.

Conclusion

Here the great news is that IoT market is growing and developers/companies are investing in it to try to be on the market as soon as possible. The “bad” news is that too much different protocols and frameworks are used and the way to interoperability and interconnection is quite long or … infinite ?